Fastfood — Approximating Kernel Expansions in Loglinear Time

نویسندگان

  • Quoc Le
  • Alex Smola
چکیده

Despite their successes, what makes kernel methods difficult to use in many large scale problems is the fact that computing the decision function is typically expensive, especially at prediction time. In this paper, we overcome this difficulty by proposing Fastfood, an approximation that accelerates such computation significantly. Key to Fastfood is the observation that Hadamard matrices when combined with diagonal Gaussian matrices exhibit properties similar to dense Gaussian random matrices. Yet unlike the latter, Hadamard and diagonal matrices are inexpensive to multiply and store. These two matrices can be used in lieu of Gaussian matrices in Random Kitchen Sinks (Rahimi & Recht, 2007) and thereby speeding up the computation for a large range of kernel functions. Specifically, Fastfood requires O(n log d) time and O(n) storage to compute n non-linear basis functions in d dimensions, a significant improvement from O(nd) computation and storage, without sacrificing accuracy. We prove that the approximation is unbiased and has low variance. Extensive experiments show that we achieve similar accuracy to full kernel expansions and Random Kitchen Sinks while being 100x faster and using 1000x less memory. These improvements, especially in terms of memory usage, make kernel methods more practical for applications that have large training sets and/or require real-time prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

McKernel: A Library for Approximate Kernel Expansions in Log-linear Time

F2F is a C++ library for large-scale machine learning. It contains a CPU optimized implementation of the Fastfood algorithm in Le et al. (2013), that allows the computation of approximated kernel expansions in loglinear time. The algorithm requires to compute the product of Walsh-Hadamard Transform (WHT) matrices. A cache friendly SIMD Fast Walsh-Hadamard Transform (FWHT) that achieves compelli...

متن کامل

Fastfood: Approximate Kernel Expansions in Loglinear Time

Despite their successes, what makes kernel methods difficult to use in many large scale problems is the fact that storing and computing the decision function is typically expensive, especially at prediction time. In this paper, we overcome this difficulty by proposing Fastfood, an approximation that accelerates such computation significantly. Key to Fastfood is the observation that Hadamard mat...

متن کامل

A la Carte - Learning Fast Kernels

Kernel methods have great promise for learning rich statistical representations of large modern datasets. However, compared to neural networks, kernel methods have been perceived as lacking in scalability and flexibility. We introduce a family of fast, flexible, lightly parametrized and general purpose kernel learning methods, derived from Fastfood basis function expansions. We provide mechanis...

متن کامل

Random Feature Mapping with Signed Circulant Matrix Projection

Random feature mappings have been successfully used for approximating non-linear kernels to scale up kernel methods. Some work aims at speeding up the feature mappings, but brings increasing variance of the approximation. In this paper, we propose a novel random feature mapping method that uses a signed Circulant Random Matrix (CRM) instead of an unstructured random matrix to project input data...

متن کامل

Recycling Randomness with Structure for Sublinear time Kernel Expansions

We propose a scheme for recycling Gaussian random vectors into structured matrices to approximate various kernel functions in sublinear time via random embeddings. Our framework includes the Fastfood construction of Le et al. (2013) as a special case, but also extends to Circulant, Toeplitz and Hankel matrices, and the broader family of structured matrices that are characterized by the concept ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013